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I. GRADIENT DERIVATION

In this supplementary material, a detailed derivation is given for the gradient computing formulas of

Equ. (8) and (9) in Sec. II-C. As defined in Equ. (5) in Sec. II-B, the objective function can be rewritten

as follows.

J(W,P1, .., PC) =

C∑
c=1

∑
x∈Xc

Sβ(Qx), (S1)

where

Sβ(z) =
1

1 + eβ(1−z)
, (S2)

and

Qx =
d(y, nncw(y))

d(y, nncb(y))
. (S3)

Note that d(·, ·) denotes the Euclidean distance, i.e., for any y, z ∈ Rr,

d(y, z) =

√√√√ r∑
j=1

(yj − zj)2. (S4)
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As claimed in Sec. II-C, we assume that the same prototype neighbor is searched when the variation in

the prototype sets and transformation matrix is sufficiently small. Under such assumption, we can derive

the gradient of loss function J with respect to W approximately according to the Chain Rule:

∂J

∂Wk
≈

C∑
c=1

∑
x∈Xc

S ′β(Qx)
d2(y, nncb(y))

· ∂d(y, nn
c
w(y))

∂Wk
d(y, nncb(y))

−
C∑
c=1

∑
x∈Xc

S ′β(Qx)
d2(y, nncb(y))

· d(y, nncw(y))
∂d(y, nncb(y))

∂Wk
.

(S5)

We can easily get

∂d(y, nncw(y))

∂Wk
=

2(x− a)(yk − nncw(y)k)

2
√∑r

j=1(yj − nncw(y)j)2
=

(x− a)(yk − nncw(y)k)
d(y, nncw(y))

,

∂d(y, nncb(y))

∂Wk
=

2(x− b)(yk − nncb(y)k)

2
√∑r

j=1(yj − nncb(y)j)2
=

(x− b)(yk − nncb(y)k)
d(y, nncb(y))

.

(S6)

By substituting Equ. (S6) into Equ. (S5), Equ. (8) can be finally derived as follows.

∂J

∂Wk
≈

C∑
c=1

∑
x∈Xc

S ′β(Qx)
d2(y, nncw(y))

· d(y, nn
c
w(y))

d(y, nncb(y))
· (x− a)(yk − nncw(y)k)

−
C∑
c=1

∑
x∈Xc

S ′β(Qx)
d2(y, nncb(y))

· d(y, nn
c
w(y))

d(y, nncb(y))
· (x− b)(yk − nncb(y)k)

=

C∑
c=1

∑
x∈Xc

S ′β(Qx)Qx
d2(y, nncw(y))

· (x− a)(yk − nncw(y)k)

−
C∑
c=1

∑
x∈Xc

S ′β(Qx)Qx
d2(y, nncb(y))

· (x− b)(yk − nncb(y)k),

(S7)

Similarly, we derive the gradient of J with respect to each vector vci ∈ Rlc , i = 1, ...,mc, c = 1, ..., C.

∂J

∂vci
≈

C∑
c=1

∑
x∈Xc
pci=a

S ′β(Qx)
d2(y, nncb(y))

· ∂d(y, nn
c
w(y))

∂vci
d(y, nncb(y))

−
C∑
c=1

∑
x∈Xc

pci=b

S ′β(Qx)
d2(y, nncb(y))

· d(y, nncw(y))
∂d(y, nncb(y))

∂vci
.

(S8)

Since we can easily obtain

∂d(y, nncw(y))

∂vci
=
UTc WW T (a− x)
d(y, nncw(y))

,

∂d(y, nncb(y))

∂vci
=
UTc WW T (b− x)
d(y, nncb(y))

,

(S9)

we can finally deduce Equ. (9)
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Algorithm 1 Optimization algorithm for PDL-OP
Input:

Data matrices of C image sets for training: {X1, X2, ..., XC} and their labels;

the slope for sigmoid function: β;

the initial prototype sets: P = {P1, ..., PC};

the initial transformation matrix: W .

Output:

The optimal P and W

1: while not converged do

2: Compute the loss function according to Equ. (5);

3: Generate A according to Equ. (S10);

4: Compute the step size τ for searching W by the curvilinear searching algorithm [1]. Call line

search along the path W (τ) defined by Equ. (S11);

5: Compute the update of V by the L-BFGS algorithm;

6: Update V and W ;

7: end while

8: Compute P by affine coefficients V according to Equ. (3);

9: return P ∗,W ∗;

II. OPTIMIZATION ALGORITHM

To solve the optimization problem minW,V J(W,V ) without projection constraint, we can update W

and V in an iterative procedure based on the derived gradients above by using limited-memory BFGS

(L-BFGS) [2] to control the step size.

As for the optimization problem minW,V J(W,V ) with orthonormal projection constraint W TW = Ir,

it is non-trivial to jointly optimize W and V as the feasible set of W is on a Stiefel manifold. Considering

its favorable property of low computational cost, we choose the curvilinear searching method in [1] to

search the step size and the path of W .

Formally, according to [1], we define a skew-symmetric matrix A as

A = GW T −WGT . (S10)

where G = ∂J
∂W . To drive the new point to satisfy W ′TW ′ = Ir, it is searched along a curve W (τ) given
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by

W (τ) =W − τA(W +W (τ)

2
), (S11)

where τ is a step size and W (τ) satisfies W (τ)TW (τ) =W TW .

Furthermore, to guarantee the optimization of W and V to be performed jointly and consistently, at

each step, we update W along the curve W (τ) by using [1] and search the new iteration of V along

straight lines by using L-BFGS. The optimization algorithm is summarized in Alg. 1.
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